5=1/4q^2

Simple and best practice solution for 5=1/4q^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=1/4q^2 equation:



5=1/4q^2
We move all terms to the left:
5-(1/4q^2)=0
Domain of the equation: 4q^2)!=0
q!=0/1
q!=0
q∈R
We get rid of parentheses
-1/4q^2+5=0
We multiply all the terms by the denominator
5*4q^2-1=0
Wy multiply elements
20q^2-1=0
a = 20; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·20·(-1)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*20}=\frac{0-4\sqrt{5}}{40} =-\frac{4\sqrt{5}}{40} =-\frac{\sqrt{5}}{10} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*20}=\frac{0+4\sqrt{5}}{40} =\frac{4\sqrt{5}}{40} =\frac{\sqrt{5}}{10} $

See similar equations:

| -3(n+5)=-15 | | 10x+x+13=20x-5 | | X-0.33(x)=1.8(x) | | 5a-3=11-2a | | 5(x+2)+8x-14=9x-2 | | X-0.33x=1.8 | | 19/4-31/2*a=-1/4*a+3/2 | | x-10+2x-20=180 | | 5/7x+4=8 | | 12+m/4=-10 | | 7b-15=5b | | -20-1/2x=20 | | 6(3x-2)=17x-18x | | -3(b+3)=18 | | 5x^+20x=0 | | -2x-(4-7x)=3x+6 | | 10*5=17.5x−10 | | 6=4+9y | | 1/2x+1/2x=1x | | 10(5)=17.5x−10 | | 14x-2x+3=3(5x+9)12x+3 | | 6x(8-5+9)-2^3=x | | -13-3p=6 | | -3x-17=-4x | | 62.10=23+.575x | | 10(x)=17.5x−10 | | 28+14x=21+42x | | 3(2/3x+x6)=3x-9 | | 8x+4x=90 | | 15x=9325 | | t+9/12=-3 | | (X-2)^2-6(x-2)+9=0 |

Equations solver categories